Connect on Whatsapp : +97143393999, Uninterrupted Access 24x7, 100% Confidential. Connect Now
New User? Start here.
Enter phone no. to receive critical updates and urgent messages !
Error goes here
Please upload all relevant files for quick & complete assistance.
Question 1 From the sample given, the following are the data preparations that need to be conducted; handling of missing values, there are some rows ...
Question1 Fromthesamplegiven,thefollowingarethedatapreparationsthatneedtobeconducted;handlingof missingvalues,therearesomerowsforboththevariablesinsurancesoldin2019andpreviousclaim whichhasmissingvalues.Thenextdatapreparationisonthevariablepreviousclaiminwhichsome valuesareincorrectlyenteredasNandYinsteadofNoandYes.Thenextdatapreparationinvolve deletingthevariablecustomeridsinceitwillnotcontributetothepredictionoftheinsurancesoldin 2020.Thefinaldatapreparationwillinvolveconvertingthepreviousclaimintobinarysinceweare dealingwitharegressionproblem. Question2 HandlingOfMissingValuesforboththevariablesinsurancesoldin2019andthepreviousclaimFor thevariableinsurancesoldin2019wecanreplacethemissingvalueswitheitherthemeanoranyother measuresofcentraltendencies.However,forthevariablepreviousclaimwithreplaceeitherthemissing valueswiththemodeorjustaconstantvaluesuchasNoorYes. Forthevariablepreviousclaim,thosevaluesinwhichwerenotcorrectlyenteredforexamplethevalue NorYweresupposedtobeenteredasNoorYesrespectively.Inthis,weenterthecorrectvaluesto matchtherestofthevalues. Thevariablecustomeridisjusthighlightedandthendeletedfromtheentiredataset. Thevariablepreviousclaimwillbeconvertedfromnominalvariabletobinaryvariable.ThatistheNo valueswillberecodedaszerowhiletheYesvalueswillberecodedasones. Question3 Theanalystshouldapplythenumerousreductiontechnique.Inthistechniquewereducethevolumeof theoriginaldatasetintoamuchsmallerform.However,wewouldpreferthenon-parametricinwhich wecanapplytheclustering.Inapplyingtheclustering,weobtainthecentroidoftheentiredatasetand thecentroidclosertocertaindatapointsaregroupedtogether.Thisprocesscontinuesuntilallthedata pointsareclusteredintotheirrespectivegroupswithacommonclustercentroid. Question4 Themodelequationisasfollows; Chemicalprice=3516.4270.665packagedweight+0.008density0.946impurities+5.383reactive efficiency Question5 Thefollowingvariablesdonotplayastatisticalsignificantroletotheaboveregressionmodelat95% confidenceleveldensityandpackagedweight.Thisisbecausetheyhavep-valuesgreaterthanthe significancelevelof5%. Question6 Thefollowingvariableshaveahighmulticollinearitywiththeresponsevariablethatisreactiveefficiency andimpurities.Thisisbecausetheyhaveahighstandardcoefficient. Question7 TheR-squaredis0.729inwhichiscloserto1suggestingthatthisisagoodregressionmodelsinceitsfits thegivendatasetquitewell. Question8 Toremovetheattributesthatnotstatisticallysignificantorhavehighmulticollinearityintherapidminer tool,wewillhavetoapplythelinearregressionbutwithforwardselectioncriterion.Thisensuresthat non-significantvariablesaredeletedfromthefinalmodel. Question9 Theassociationrulebadtransport,badcustomerservicerepresentsacorrectandasignificant associationrulesincetherawfrequencyofoccurrenceis55. Question15 Inordertopreventthecustomersfromchurningwehavetoselectthefollowingvariableswithdecision ruleslasttransactiondate,discount,metroregionandweonlyconsidereastandsouth.Furthermore, wecanalsoconsiderthelasttransactiondataandthengreaterthanjuly19,2019toavoidthe customersfromleavingorchurning. Question16 Fromtheconfusionmatrix,wenoticethatthepredictionofnois87.41%whilethepredictionofyesis 68.26%.Thissuggestthatthemodelhasahighsensitivitythanspecificity.Theaccuracyis81.80plusor minus3.85indicatingthatthemodelisgoodquiteinclassifyingthecustomersaseitherloyalorchurn. The3.85valueindicatestheintervalinwhichtheaccuracycanobtainaminimumvalueandamaximum value. Question17 Basedontheaccuracyachievedtheanalystisveryconfidentthatthemodelisacceptedforthe objectiveofthetask.Thisisbecauseitindicatedahighaccuracyvalue. Question18 Theanalystshouldimprovethespecificityofthemodel.Thisisbecausethemodelachievedaless specificityof68.26%.
Enter the password to open this PDF file:
On APP - grab it while it lasts!
*Offer eligible for first 3 orders ordered through app!
ONLINE TO HELP YOU 24X7
OR GET MONEY BACK!
OUT OF 38983 REVIEWS
Received my assignment before my deadline request, paper was well written. Highly recommend.
Only one step away from your solution of order no.